Asymptotic Mutual Information for the Balanced Binary Stochastic Block Model
نویسندگان
چکیده
We develop an information-theoretic view of the stochastic block model, a popular statistical model for the large-scale structure of complex networks. A graph G from such a model is generated by first assigning vertex labels at random from a finite alphabet, and then connecting vertices with edge probabilities depending on the labels of the endpoints. In the case of the symmetric two-group model, we establish an explicit ‘single-letter’ characterization of the pervertex mutual information between the vertex labels and the graph, when the mean vertex degree diverges. The explicit expression of the mutual information is intimately related to estimation-theoretic quantities, and –in particular– reveals a phase transition at the critical point for community detection. Below the critical point the per-vertex mutual information is asymptotically the same as if edges were independent. Correspondingly, no algorithm can estimate the partition better than random guessing. Conversely, above the threshold, the per-vertex mutual information is strictly smaller than the independent-edges upper bound. In this regime there exists a procedure that estimates the vertex labels better than random guessing.
منابع مشابه
Asymptotic Mutual Information for the Two-Groups Stochastic Block Model
We develop an information-theoretic view of the stochastic block model, a popular statistical model for the large-scale structure of complex networks. A graph G from such a model is generated by first assigning vertex labels at random from a finite alphabet, and then connecting vertices with edge probabilities depending on the labels of the endpoints. In the case of the symmetric two-group mode...
متن کاملAsymptotic Analysis of Binary Gas Mixture Separation by Nanometric Tubular Ceramic Membranes: Cocurrent and Countercurrent Flow Patterns
Analytical gas-permeation models for predicting the separation process across membranes (exit compositions and area requirement) constitutes an important and necessary step in understanding the overall performance of membrane modules. But, the exact (numerical) solution methods suffer from the complexity of the solution. Therefore, solutions of nonlinear ordinary differential equations th...
متن کاملA Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning
The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016